

Synthetic Approaches to Bio-Optic Systems

Leonard J. Buckley
Defense Science Office
Lbuckley@darpa.mil

Mantis Shrimp Eye

DEFENSE SCIENCES OFFICE

- •UV vision
- •Several narrow-band photoreceptors
- •Lower sensitivity but higher color discrimination

Multi-band Sensitivity

- Prey and Predator Recognition
- UV scattering provides better contrast

Snake Pit Organ

DEFENSE SCIENCES OFFICE

J. Struct. Biol. 126, 1999, 105

- 0.02 °C sensitivity
- Suspended from body
- Covered by unique scale that only transmits IR 3-5 and 8-12 µm

UT-Austin MURI. AFOSR

Brittlestars Microlenses

DEFENSE SCIENCES OFFICE

- *Calcite microlenses with the function of a compound eye
- *No photosensory organs yet can "detect shadows"
- *Sensitivity to light correlates with structure
- *Calcite has different refractive indices for light polarized in different directions

Useful for improved:
Fill Factor
Cold Shield Efficiency

Fish Eye

DEFENSE SCIENCES OFFICE

tapetum 10 retina lens optic nerve cornea

Man-made Fisheye Lens
1000x Larger in Volume

Graded Index of Refraction $\Delta n = 0.22$ or greater

Complicated focusing in Man-made system

Spherical Aberration

- •Peripheral rays are over-focused
- •Results in poor image quality

Fish Eye Lens (GRIN)

(Spherical aberration is a problem in all optical systems based on spherical interfaces)

Synthetic Bio-optics Vision

Synthetic Bio-Inspired Optics

Beyond

- Variable Index Lens
- Dynamic Field of View
- •Multifunctional Optics
 - •Fewer Components

Multi-layer Structure in Human lens

Today

- Fixed Index Lens
- Limited Field of View
- Single Function Optics
 - Many Components

Standard Lens

Graded Index Lens

Octopus Lens

Synthetic Bio-optics Vision

Synthetic Bio-Inspired Optics

Beyond

- Variable Index Lens
- Dynamic Field of View
- •Multifunctional Optics
 - Fewer Components

Dynamic Control of the Refractive Index Wavelength Variable Reflectance Hierarchical Material Structure

Multi-layer Structure in Human lens

Today

- Fixed Index Lens
- Limited Field of View
- Single Function Optics
 - Many Components

Standard Lens

Graded Index Lens

Octopus Lens

Refractive Index

Dynamic Control over a wide range of refractive indices

Refractive Index

DEFENSE SCIENCES OFFICE

increasing refractive index

Role of Morphology

Semi-crystalline PTFE = 1.42 (@ 1 GHz)
Amorphous PTFE = 1.36 (@ 1 GHz)
Completely Amorphous PTFE = 1.29 (calculated)

Lorenz-Lorentz Equation

$$\frac{n^2-1}{n^2+2} = \frac{R}{V}$$

R = Molar Refraction

V = Molecular Volume

(Density/Molecular Weight)

Polyimide n=1.7

$$\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

Polytetrafluoroethylene n=1.42

Spectral Window

DEFENSE SCIENCES OFFICE

Hierarchical Structure

- Intermediate fibers embedded in matrix
- Macrofibrils bundled together
- Cuticle tie macrofibrils together

"Nylon" Fiber (polyamide)

Can secondary bonding forces be used to enhance morphological complexity?

Can the process proceed at a facile rate?

Role of Structure

DEFENSE SCIENCES OFFICE

Dynamic Control of Refractive Index Wavelength Variable Reflectance Hierarchical Structure

Controllable Index Lens Dynamic FOV Simplified Optics

FY-06

Fixed Index Lens Limited/Fixed FOV Many Parts

Today

Technical Milestones:

Phase I

- 1. 3Q FY03 Develop a dynamically variable lens compound that exhibits a full point (1.0) reversible change in the index of refraction in the visible-NIR with 95% or better transparency.
- 2. 1Q FY04 Demonstrate the use of self-assembly processes to synthetically reproduce materials with a variable reflection in the VIS to near-IR that performs as a wavelength variable bandpass filter.

Phase II

1. 4Q FY06 Demonstrate a re-configurable optical system that includes a multifunctional lens, a wavelength variable reflective packaging system, and an artificial

Meeting Objectives

- •Introduce Concept
- Facilitate Teaming
- •Clarify Program Details

FAQ's

- *Spectral band of interest
- *Response time
- *Size (necessary to demonstrate proof of concept)
- *Index range (goal=1.0)

Programmatics

- *BAA is open till AUG, 2002 (60 day/7day)
- *Anticipated level of effort

Bio-Optic Synthetic Systems

Idea:

*To understand and synthetically reproduce the components of biological vision systems that would greatly reduce the need for multiple sets of optics

Technical Challenges

- •Materials with a dynamic index of refraction
- Develop a variable FOV lens
- •Synthetic pathways to extreme materials
- Develop Bio-inspired optics

Impact

Multifunctional molecular optics that are bio-inspired and greatly simplify the optics on a variety of sensor systems

Four-eyed Fish

Fish Eye